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To Tony Sheu

Wishing you
Good spirit, Good health,
Keep random walk with deterministic mind

Enjoy life!
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Introduction

Shock Vortex Interaction

Flow discontinuities, Unsteady waves,
Accuracy, Easy treatment of BCs, Length Scales

NASA Glenn Research Center website:
http://www.grc.nasa.gov/WW W /microbus/
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The Inventor of the CESE Method

Dr. Sin-Chung Chang
NASA Glenn Research Center
Chang SC, (1995), The method of space-time conservation element and solution

element— a new approach for solving the Navier-Stokes and Euler equations,
Journal of Computational Physics, 119, 295-324.
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CESE Method

(1) The method 1s a complete explicit scheme.

(2) Non-dissipative scheme.

(3) Add numerical dissipation as desired.

(4) Enforced space-time flux conservation, local/global flux conservation.
(5) The spatial derivative 8—Z 1s treated as unknown variable w/o

discretization.

(6) No flux reconstruction at mesh interface (Riemann problem).
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Our Former CESE Applications
Shock Diffraction

Shock Diffraction
over a 75 degrees corner
(Mo=2.5)

Density Contours

CE/SE Group
NCKU ES Computing & Microfluidics Lab.

Tseng T and Yang RJ 2005, Shock Waves, Vol. 14, 307-311
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Our Former CESE Applications

Supersonic Flow over a Wedge




1-D Thermal Waves

Presentation of wave, wavelike and diffusion behaviors

CV model DPL model Diffusion
Temperature
wave wavelike diffusion

Heat flux vector

Chou Y and Yang RJ, 2008, International Journal of Heat and Mass Transfer,
Vol. 51, 3525-3534



2D Thermal Wave

Wave behavior in the condition of B=0.0

Wavelike behavior in the condition of B=0.1

Chou Y and Yang RJ, 2009, International Journal of Heat and Mass Transfer,
Vol.52, 239-249



Zone Electrophoresis

Introduced in the 1960s, the technique of capillary zone electrophoresis
(CZE) was designed to separate species based on their size to charge
ratio in the interior of a small capillary filled with an electrolyte.

(@

power supply

buffers |

anode Samples 1+2+3 cathode
®) AN
O~
< A Sa
ut g B 0 I
anode 3 2 1 cathode




Validation of CESE scheme in ZE
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Yu JW, Chou Y and Yang RJ, 2008, Electrophoresis, Vol.29, 1048-1057



IsoTachoPhoresis (I'TP)

e Isotachophoresis (ITP) (Greek: iso = equal, fachos = speed, phoresis = migration) is
a technique in analytical chemistry used to separate charged particles.
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Validation of CESE scheme in ITP
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Chou Y and Yang RJ, 2009, Electrophoresis, Vol.30, 819-830



Isoelectric Focusing (IEF)

®The pH at which charge reversal occurs, 1.e. where the net

charge 1s zero, 1s called the 1soelectric point, or p/.
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IEF results- transition solutions

8 20s 40s

x (cm) :

65s 110s

Chou Y and Yang RJ, 2010 Journal of Chromatography A, Vol. 1217, 394-404



(1)Applying a fine mesh to solve complex fluid flow problems is
computationally expensive.

(2) Adaptive mesh provides suitable mesh as necessary to save
computational cost.

(3) The solutions in the current time-step are computed directly from the
solutions obtained 1n the previous time-step without the need for

extrapolation or interpolation.
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Traditional CESE Method

Stationary Mesh

t
Example: a_u +a @_u =0 * °

ot Ox

h = (au,u)

) r+dr/ dr
(a 1s constant speed) . A

—_

V. h=—(au)+—(u) 0 .

A surface element ds and a line segment dr

IV-E-dv:jfz-ﬁ-daz
on the boundary S(V).

j(au u)-(dt,—dx) = jau -dt — ju dx =0

(;,H) (J”) (}”) | x
I\CE ) | GE: L= l
(j-1/2, (+l'2. (j-12. (j+12. &<
n-1/2) n-12)  n=1/2) n-1/2) *° M
. = 1 -
Two Eqgs. — Solve u and u,.
X
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duction of one-dimensi
adaptive CESE method

18
Computing & Microfluidics Lab




Mesh redistribution

Physical Coordinate: X = (X, X505 Xy )

Computational Coordinate: &=(&,&,,.....,&,)

Quasi-Static Equidistribution Principle

(a)x‘f)g =0

Monitor Function: o = \/ 1+ B(VD)
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Space-time domain

| Stationagz I

I:H JE'} x-’;” n+l ‘ xf_l ‘ xf x.f'“‘l
-—e . . ’ —eo— | - . * » » » >
- L 4 ' * . —— {”H 2 --—e ' : ' 4 . £ . . P
i : i ",
— * * ] ? r” i ; i ’ X - % -—
. <: : E ::;, ...<: .":‘ "'.1 ."',"‘ :...
t s : n-1/2 t / | .
-+ - - ’ [
L. X l—» X

The space-time is divided into non-overlapped rectangular regions as the conservation

elements and each mesh nodes (marked by filled circle) are setting as the solution elements.
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The solution element (SE)

and conservation element (CE

Flow properties are assumed continuous within SE. For any (X, y) € SE(J, n), u,, (x, )
and f (x, t) are approximated by u*, (x, ¢) and 1~ (x, ).
They are defined as :

un (et jom) =, '+ G ) o=, )+ G, o= 27)
ot ion)=(f, )+ (fo Y o=, )+ (£, ) e=2")

The CE combines two basic CEs, CE+ and CE-, and to en

Solution element in point (j,n)

flux conservation across CE surfaces we have

Fr—
() =—(F +F, +F +F, )J/(2Ax,), m=123
(j-12 % (7+1/2.
where the /', F,_, F. and F. denote the fluxes of cross tl |
n—1/ 2) F>- Foe n—1/2)
line segment BE ,EC ,CF and FD, respectively.

Basic conservation element CE+ and CE-
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[(f,,,x 280/ 2)—(, Y (1, 2 A2 2
n—1/2 n—1/2 ] F]_—P .'~ T FI+
umx i 1/2( )2/2+ 1/2( XAt/Z :

ETCIF

(2) FZ_ :§F(E—>C)h -ds F5- Fo

=9,(C)-9,(E)
=1, V(A )=, i (A 2

The compounded conservation elements

(3) F,.= r(cﬁF)h*'ds 4 F = i(ma)h*'dS
=9,(F)-9,(C) —(p (D)-g, (F)
L a2 (e 2] = e 2 ) (1, ) a2 2
(a2 (7, )y Nae r2)
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The (!, )j .., 18 the first-order Taylor’s series approximation of u,, at (j+1/2,n).

(ul’ﬂ )};‘11/2 = (um x:;z + (umx x:g (Axli )+ (umt x:;z (At / 2)’ m = 19293’

The (,2 ) )ﬁ denote first-order spatial derivatives of the backward and forward differential
mx— J
schemes at point (j,n). % u
point (j,n) ).,
)\ n Lu’
A um . - um . ‘-‘*--. b
(mei)" _ ( )ilil/2 (n )J ,m= 1’2,3 .
’ Xz =X,
The solution gradient (ﬁmx )j are evaluated by
R a R R a R N
A no_ (umer )Jv (umx_ )]' + (umx_ )Jv (umer )Jv =12
(umx )J - a o n ”x_f+l- 2
(umx+ yjy T (umx_ )]' x..-’._l /2 x.,r'+l /2
( (,2 )‘ 4 ‘(ﬁ y > 0) Schematic of weighting function
mx" mx~ /j
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Adaptive-CESE Algorithm

(1) Give the initial solutions, (u,, ), and («,,); with a uniform mesh to the physical domain at
time ¢ =0.

(2) Compute and smooth the monitor function values @,,,,.

(3) Move each grid point from its current location x/' to a new location x/*' using the Gauss-

Seidel iteration method.

and (u,, )]

J

(4) Compute the flow variables, (u,,)!

J

(5) If ¢ <T output time, set (u,,)’ =(u, )" and x| = (x;’jll//zz + x5 )/2 and then return to

using the adaptive CESE scheme.

step (2) for the next time step.
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Shock tube problems (1)

(1)The Sod’s shock tube proble  “[ ' '

(1.0,0,1.0)  if x<0.5
(0.125,0,0.1) if x>0.5

(p,u,p)={

Awp | Pthpy
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Shock tube problems (1)
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Shock tube problems (2)

(2) The problem of two interaction blast Y—
waves

((1,0,1000) if x<0.1

(p,u,p)=1(1,0,0.01) if0.1<x<0.9 i
(1,0,100)  if x>0.9 N
At :
a i 2 :
A-1- P Pt Py Aot Py i :
: : 1—\.‘J' %,—;-
0 I 7 S R TR
X
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Shock tube problems (2)

t=0.038
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duction of two-dimensi
adaptive CESE method
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Space-time domain

The space-time grid points at three adjacent time levels.

Computing & Microfluidics Lab



Solution element

Flow properties are assumed continuities within SE. For any S

(x, y,t) € SE(Q*) and any m=1234 , u, (x,3,1), £, (e, »1), g,(x,»t) and
h,(x.7.1), respectively, will be approximated by «, (x.».:0"),
fuley£0") | g,(x2.60") and b, (x.7.50) to be defined immediately.

Let

607 = )y + o )b, J i ) b=y o ) -7)

et )= () + by el ) b=y Jo )y =)

&0 )= (g, )y g by Pl ) vy Jo (g b0

Solution element
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Basic conservation element

(a) The basic conservation element CE"(Q).

(b) The basic conservation element CE® (Q).

(c) The basic conservation element CE® (Q).

(d) The basic conservation element CE™ ().

o
©) (d) 32
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Two-dimensional Riemann problems

Numerical results
(2) (D : o
(a) adaptive mesh distribution
(b) adaptive CESE solution with 150x150 grid points
y (3) “) (c) the CESE solution with 150x150 grid points.
‘ (d) the CESE solution with 400x400 grid points.
X

Initial conditions for the two-dimensional
Riemann problems.

The spatial computation domain is defined by [0,1]x[0,1] and the initial conditions include
four constant states.

The four interfaces number are defined as (¢, k)= {(1,2),(2,3),(3,4),(4,1)}

The forward and backward shock wave is denoted S, and S .

The forward and backward rarefaction wave is denoted R,, and R,, .

The forward and backward slip line is denoted J,;, and J, .
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Riemann problems (1)
Pure shock waves interaction

Sub-case S,5,,55,S;, :

1.1,0,0,1.1)=--=--on-=-

0.5065,0.8939,0,0.35)-- (2)
1.1,0.8939,0.8939,1.1)-- (3)
0.5065,0,0.8939,0.35)-- (4)
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Riemann problems (1)
Pure shock waves interaction

0.8
0.6 -
04

02

07”‘|H‘|H‘|H‘|H7OH‘IH‘l“‘lH‘lH‘
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
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Riemann problems (2)
Pure slip line interaction

Sub-case J,J,J.,J;
——————————

1,0.75,-0.5,1)--- (1)
2,0.75,0.5,1)----(2)
1,-0.75,0.5,1)--- (3)
3,-0.75,-0.5,1)-- (4)
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Riemann problems (2)
Pure slip line interaction
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Riemann problems (3)
Interaction of multiple waves

Sub-case S,,J5,J..S; :

(o 5313,0,0,0.4)--(1)
(1,0.7276,0,1)----(2)

(1,0,0.7276,1) ----(4)

1.68866
1.60097
1.52328
1.44059
1.3579
1.27521
1.19252
1.10983
1.02714
0.944448
0.861759
0.779069
0.696379
0.61369
0.531
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Riemann problems (3)
Interaction of multiple waves
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Conclusion

(1) The CESE scheme can cover vast range of scales.

(2) The proposed adaptive CESE scheme in the current time-step 1s computed
directly from the solutions obtained in the previous time-step without the need
for extrapolation or interpolation.

(3) The adaptive CESE scheme captures the flow features with a significantly higher
resolution than the original CESE solver.

(5) The adaptive CESE scheme (implemented on a coarse mesh) achieves the same
(or better) resolution as the original stationary CESE solver on a fine mesh, but

with a significantly lower computational cost.
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Progress is impossible without change, and those who
cannot change their minds cannot change anything.

-- George Bernard Shaw, Irish playwright
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