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To Tony Sheu 
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    Wishing you 

   Good spirit, Good health,  

  Keep random walk with deterministic mind 

      Enjoy life! 



Introduction 
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Shock Vortex Interaction 

Flow discontinuities, Unsteady waves, 

Accuracy, Easy treatment of BCs, Length Scales 

 NASA Glenn  Research Center website: 
http://www.grc.nasa.gov/WWW/microbus/ 

3 



The Inventor of the CESE Method 
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Dr. Sin-Chung Chang 
NASA Glenn Research Center 

Chang SC, (1995), The method of space-time conservation element and solution 
element– a new approach for solving the Navier-Stokes and Euler equations,  
Journal of Computational Physics, 119, 295-324. 
 



CESE Method 
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(1) The method is a complete explicit scheme. 

(2) Non-dissipative scheme. 

(3) Add numerical dissipation as desired. 

(4) Enforced space-time flux conservation, local/global flux conservation. 

(5) The spatial derivative        is treated as unknown variable w/o 

     discretization. 

(6) No flux reconstruction at mesh interface (Riemann problem). 
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Our Former CESE Applications 
Shock Diffraction 
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Tseng T and Yang RJ 2005, Shock Waves, Vol. 14, 307-311  



Our Former CESE Applications 
Supersonic Flow over a Wedge 
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Tseng T and Yang RJ 2006, AIAA Journal, Vol.44, 1040-1047  



CV model DPL model 

1-D Thermal Waves 
 

Temperature 

Heat flux vector 

Diffusion 

Presentation of wave, wavelike and diffusion behaviors  

wave wavelike diffusion 

Chou Y and Yang RJ, 2008, International Journal of Heat and Mass Transfer,  
Vol. 51, 3525-3534  



 
 

2D Thermal Wave 
 Wave behavior in the condition of B=0.0 

Wavelike behavior in the condition of B=0.1  

Chou Y and Yang RJ, 2009, International Journal of Heat and Mass Transfer, 
Vol.52, 239-249 
 



Zone Electrophoresis 

power supply

Samples 1+2+3
+ -

+ -

buffers

(a)

(b)

anode cathode

123 cathodeanode

Introduced in the 1960s, the technique of capillary zone electrophoresis 
(CZE) was designed to separate species based on their size to charge 
ratio in the interior of a small capillary filled with an electrolyte.  



Validation of CESE scheme in ZE 

2 μA, ∆x=25µm, 8001 grids 

Yu JW, Chou Y and Yang RJ, 2008, Electrophoresis, Vol.29, 1048-1057  



IsoTachoPhoresis (ITP)  

 Isotachophoresis (ITP) (Greek: iso = equal, tachos = speed, phoresis = migration) is 
a technique in analytical chemistry used to separate charged particles. 

power supply
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(b)
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terminating 
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(c)

leading 
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terminating 
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12

E

cathodeanode

 In isotachophoresis the sample is 
introduced between a fast leading 
electrolyte and a slow terminating 
electrolyte.  



 
Validation of CESE scheme in ITP 

∆x=100µm, 1201 grids 

 Chou Y and Yang RJ, 2009, Electrophoresis, Vol.30, 819-830 



The pH at which charge reversal occurs, i.e. where the net 
charge is zero, is called the isoelectric point, or pI. 

 Isoelectric Focusing (IEF) 
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20s 40s 

65s 110s 

  

 IEF results- transition solutions 

Chou Y and Yang RJ, 2010 Journal of Chromatography A, Vol. 1217, 394-404  



Motivation 
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(1)Applying a fine mesh to solve complex fluid flow problems is 

computationally expensive.  

(2) Adaptive mesh provides suitable mesh as necessary to save 

computational cost.  

(3) The solutions in the current time-step are computed directly from the 

solutions obtained in the previous time-step without the need for 

extrapolation or interpolation. 



Traditional CESE Method 
(Stationary Mesh) 
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A surface element ds and a line segment dr  

on the boundary S(V).  

Two Eqs. → Solve u and 𝑢𝑢𝑥𝑥 .         
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Introduction of one-dimensional 
adaptive CESE method 
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Mesh redistribution 
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Physical Coordinate: 

( ) 0=
ξξωx

),.....,,( 21 dxxx=x

),.....,,( 21 dξξξ=ξ

Monitor Function: ( )21 Φ∇+= βω

Computational Coordinate: 

Quasi-Static Equidistribution Principle 

Φ: Flow variables 

β : scaling parameter 



Space-time domain 
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The space-time is divided into non-overlapped rectangular regions as the conservation 

elements and each mesh nodes (marked by filled circle) are setting as the solution elements.  
20 

Stationary Moving 



The solution element (SE) 
 and conservation element (CE) 
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Flow properties are assumed continuous within SE. For any (x, y)      SE( j, n), um (x, t) 

and  fm (x, t) are approximated by u*
m(x, t) and  f *

m(x, t).  

They are defined as : 

∈

( ) ( ) ( ) ( ) ( ) ( )nn
jmtj

n
jmx

n
jmm ttuxxuunjtxu −+−+=,;,*

( ) ( ) ( ) ( ) ( ) ( )nn
jmtj

n
jmx

n
jmm ttfxxffnjtxf −+−+=,;,*

Solution element in point (j,n) 

Basic conservation element CE+ and CE- 

The CE  combines two basic CEs, CE+ and CE-, and to enforce 

flux conservation across CE surfaces we have  

( ) ( ) ( ) 3,2,1  ,2/ 32121 =∆+++−= ++−− mxFFFFu n
jm

where the     ,      ,       and      denote the fluxes of  cross the 

line segment BE ,EC ,CF and FD, respectively. 

−1F −2F +2F +1F
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The compounded conservation elements 
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The              denote first-order spatial derivatives of the backward and forward differential 

schemes at point (j,n). 
( )n

jmxu ±ˆ

The solution gradient             are evaluated by  ( )njmxû
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n
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Adaptive-CESE Algorithm 
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(1) Give the initial solutions,           and            with a uniform mesh to the physical domain at 

time         . 

(2) Compute and smooth the monitor function values           . 

(3) Move each grid point from its current location        to a new location          using the Gauss-

Seidel iteration method. 

(4) Compute the flow variables,          and            using the adaptive CESE scheme. 

(5) If                  output time, set                           and                                       and then return to 

step (2) for the next time step. 
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Shock tube problems (1) 
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(1)The Sod’s shock tube problem 

( ) ( )
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≥
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Shock tube problems (1) 

Computing & Microfluidics Lab 
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Shock tube problems (2) 
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(2) The problem of two interaction blast 
      waves 
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Shock tube problems (2) 
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t=0.038 
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Introduction of two-dimensional 
adaptive CESE method 
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Space-time domain 

Computing & Microfluidics Lab 

The space-time grid points at three adjacent time levels.  
30 



Solution element 
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Flow properties are assumed continuities within SE. For any 

                    and any                 ,            ,             ,              and 

            , respectively, will be approximated by                  ,  

                 ,                   and                    to be defined immediately. 
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Basic conservation element 
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(a) The basic conservation element               .  

(b) The basic conservation element               .  

(c) The basic conservation element               .                                  

(d) The basic conservation element               .  
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Two-dimensional Riemann problems 
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x

y

(1)(2)

(3) (4)

The spatial computation domain is defined by                  and the initial conditions include 

four constant states. 

The four interfaces number are defined as  

The forward and backward shock wave is denoted       and       . 

The forward and backward rarefaction wave is denoted       and       . 

The forward and backward slip line is denoted       and       . 

[ ] [ ]1,01,0 ×

( ) ( ) ( ) ( ) ( ){ }1 ,4 ,4 ,3 ,3 ,2 ,2 ,1 , =k

+
kS

−
kS

+
kR

−
kR

+
kJ 

−
kJ 

Numerical results 

(a) adaptive mesh distribution 

(b) adaptive CESE solution with 150x150 grid points 

(c) the CESE solution with 150x150 grid points. 

(d) the CESE solution with 400x400 grid points. 

Initial conditions for the two-dimensional 
Riemann problems. 
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Riemann problems (1) 
Pure shock waves interaction 
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Sub-case                     :      −+−+
41342312 SSSS
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(1) ------------ 1.1 ,0 ,0 ,1.1

,,, pvuρ



Riemann problems (1) 
Pure shock waves interaction 
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Riemann problems (2) 
 Pure slip line interaction 
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Sub-case                     :      −−−−
41342312 JJJJ
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Riemann problems (2) 
 Pure slip line interaction 
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Riemann problems (3) 
 Interaction of multiple waves 
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Sub-case                     :      ++−−
41342312 SJJS
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Riemann problems (3) 
 Interaction of multiple waves 
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Conclusion 
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(1) The CESE scheme can cover vast range of scales. 

(2) The proposed adaptive CESE scheme in the current time-step is computed 

directly from the solutions obtained in the previous time-step without the need 

for extrapolation or interpolation. 

(3) The adaptive CESE scheme captures the flow features with a significantly higher 

resolution than the original CESE solver. 

(5) The adaptive CESE scheme (implemented on a coarse mesh) achieves the same 

(or better) resolution as the original stationary CESE solver on a fine mesh, but 

with a significantly lower computational cost. 
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Progress is impossible without change, and those who 
cannot change their minds cannot change anything. 

-- George Bernard Shaw, Irish playwright 
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